

ECVET - Curriculum

UNIT TEMPLATE

Institution:	Intercollege
Programme/Training Title:	Automotive Engineering Diploma
Unit Title:	Internal Combustion Engines I AUTO 100
Unit Type (e.g. major, minor, elective):	Major
Unit Level:	EQF Level 5
Duration:	15 weeks (39 guided hrs – total 150 hrs)
Pre-requisites:	Thermodynamics MTECH 100
Instructor:	Dr. Andreas Loizou
Number of ECVET credits:	6

Learning Outcomes:

By completion of this unit the learner should be able to

- 1. Understand the Otto and Diesel cycles for internal combustion engines
- 2. **Describe** the different types of valve timing systems
- 3. **Identify** of the major engine parts through practical workshops

ECVET – Curriculum

UNIT TEMPLATE

TEMPLATE FOR AN ECVET UNIT- Intercollege Nicosia AUTO- 100 Internal Combustion Engines I

Learning outcomes By the end of this course a learner is expected to:	Method of assessment	KSC Breakdown (Knowledge – Skill - Competence)		Estimated student work time in hours
Understand the Otto and Diesel cycles for internal combustion engines •	 Mid-term and final exams Class discussion Class participation 	K	 Being able to describe the different IC engines cycle of operation (petrol and diesel) Describe two stroke and four stroke Describe Pressure-volume diagrams 	70
		S	Not applicable	0
		C	Not applicable	0
Describe the different types of valve timing systems	 Final exams Class discussion Class participation Workshop 	K	 Describe methods of valve timing (chain, gears and belts) Variable valve timing principles 	21
		S	Extract information from valve timing diagram	20
	participationWorkshop report	С	Perform measurements in workshop and adjust valve/cam clearance	4
parts through practical workshops workshops	Laboratory / workshop report	K	• Identify the exact location of each component on the IC engine	19
	Observation through workshop	S	• Determining the kind of tools and equipment needed to do a job.	8

ECVET – Curriculum

UNIT TEMPLATE

TOTAL			150
C	C	 Identification of worn parts that need to be replaced Complete disassembly and assembly of the IC engine by the students Measure the engine cubic capacity in workshop Imagine how something will look after it is moved around or when its parts are moved or rearranged. Use of supporting software for the utilization of correct/proper methodologies in assembling and disassembling an engine 	8

Unit Content:

- 1. Classification and operation of piston engines
 - 1.1. Spark ignition (Petrol engines)
 - 1.2. Compression ignition (Diesel engines)
 - 1.3. Compression ratio
 - 1.4. Engine configuration (cylinder and valve arrangement)
 - 1.5. Theoretical two stroke and four stroke cycle (Otto and Diesel)
 - 1.6. Actual (Diagrams) two stroke and four stroke cycle (Otto and Diesel)
 - 1.7. Energy conversion
- 2. Combustion
 - 2.1. Mixture characterization
 - 2.2. Factors that affect combustion

ecvet permit

ECVET - Curriculum

UNIT TEMPLATE

- 3. Wankel (Rotary) engine
 - 3.1. Principle of operation
 - 3.2. Recent development
- 4. Main engine components

Methods of removal/installation of components, wear inspection and fault identification

- 4.1. Engine Block
- 4.2. Camshaft
- 4.3. Cylinders and cylinder sleeves
- 4.4. Valves and valve cover
- 4.5. Cylinder head (Inspection and tightening methods Torque settings)
- 4.6. Pistons and piston rings
- 4.7. Spindles
- 4.8. Connecting rod
- 4.9. Crankshaft
- 4.10. Oil sump
- 5. Fuel supply system
 - 5.1. Crankshaft to camshaft drive methods
 - 5.2. Belts and chains
 - 5.3. Valve timing and valve clearance
 - 5.4. Variable valve timing systems
- 6. Supercharging and turbocharging
 - 6.1. Principle of operation
 - 6.2. Compressors
 - 6.3. Turbochargers

ecvet permit

ECVET - Curriculum

UNIT TEMPLATE

Teaching methods

The theoretical part will be conducted in specially arranged technology room, equipped with all the necessary teaching aids (sections). It also includes the use of simulators, with which students will study factors affecting the operation of the engines.

The workshop part will take place in a specially designed IC engines laboratory, equipped with engines and basic engine parts like the ones taught in theory. The following workshops will take place:

- 1. Identification of tools and equipment for detecting faults
- 2. Wear inspection and fault identification for different components
- 3. Removal and installation of specific components from the IC engines
- 4. Laboratory Work 1 (See assessment methods)
- 5. Laboratory Work 2 (See assessment methods)

Assessment methods

Assessment methods	Description	Assessment criteria	Share to final grade
Laboratory Work 1	Measurement of the valve clearance, and clearance adjustment procedure	Correct measurement of clearance and calculations for correction.	Laboratory Report 10%
	according to manufacturer specifications.	and carculations for correction.	
Mid-term examination	The syllabus up to week 6 is examined.	40% Multiple Choice Questions	Written Exam 20%
		60% Essay type questions and	
		Mathematical solving-type questions	
Laboratory Work 2	Measurement of cubic capacity for	Accurate measurement of specific	Laboratory Report 20%
	internal combustion engine	engine parameters that will lead to	
		correct calculations on the engine's	
		cubic capacity.	
Final Examination	Comprehensive examination of the	20% Multiple Choice Questions	Written Exam 40%
	module's syllabus	80% Essay type questions and	
	-	Mathematical solving-type questions	
Attendance and Participation	Records of regular student attendance	Total number of class absences and	Absences 10%

ECVET - Curriculum

UNIT TEMPLATE

laboratory participation	
--------------------------	--

Required books:

Authors	Title	Editor	Year	ISBN
Ζαχμάνογλου Θ.				
Καπετανάκης Γ.	Τεχνολογία αυτοκινήτου - Πέρα από το 2000:	I.Δ.E.E.A.	2010	9789608633308
Καραμπίλας Π.				
Πατσιαβός Γ.				

Suggested books:

Authors	Title	Editor	Year	ISBN
Λ. Κλιάνης, Ι.	Μημουρία Εποπορισία Κούπορα (πούπορα 1801	Ακαδημία		960-337-046-0
Νικολός,	Μηχανές Εσωτερικής Καύσεως (πρώτος και	Εμπορικού	2002	
Ι. Σιδέρης	δεύτερος τόμος)	Ναυτικού		960-337-047-9
Γ. Αγερίδης, Π.		Τεχνικά		
Καραμπίλας, Κ.	Μηχανές εσωτερικής καύσης Ι (Ά Τεύχος)	επαγγελματικά	2001	
Ρώσσης		εκπαιδευτήρια		

The project has been funded with the support of the European Commission. This publication (communication) reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Agreement No.:2014-1-CY01-KA202-000276